При значении второго множителя больше 5, удобнее использовать для получения результатов табличных значений другой прием: прием прибавления к предыдущему результату.
Например:
Вычисли и запомни:
2*6 = 2*5 + 2 = .
2*7 = 2*6 + 2 = …
2*8 = 2*7 + 2 = …
2*9 = 2*8 + 2 = .
Аналогичным образом составляется таблица значений умножения числа 3.
Следующим приемом, на основе которого составляются таблицы значений умножения чисел, является прием перестановки множителей.
Этот прием фактически является первым математическим законом относительно действия умножения в начальной школе:
От перестановки множителей произведение не меняется.
Способ знакомства детей с этим правилом (законом) обусловлен ранее введенным смыслом действия умножения. Используя предметные модели множеств, дети сосчитывают результаты группировки их элементов разными способами, убеждаясь, что результаты не меняются от изменения способов группировки.
Например: ☺ ☻ 2 * 3 = 6
☺ ☻ 3 * 2 = 6
☺ ☻
Счет элементов рисунка (множества) парами по горизонтали совпадает со счетом элементов тройками по вертикали. Рассмотрение нескольких вариантов подобных случаев дает учителю основание произвести индуктивное обобщение (т. е. обобщение нескольких частных случаев в обобщенном правиле) о том, что перестановка множителей не меняет значение произведения.
На основе этого правила, используемого как прием счета, составляется таблица умножения на 2.
Например:
Используя таблицу умножения числа 2, вычисли и запомни таблицу умножения на 2:
2*3 =6 3*2 =…
2*4 =8 4*2 =…
2*5 =10 5*2 =…
2*6 =12 6*2 =…
2*7 =14 7*2 =…
2*8 =16 8*2 =…
2*9 =18 9*2 =…
На основе этого же приема составляется таблица умножения на 3:
3*4 =12 3*7 =21 4*3 =… 7*3 =…
3*5 =15 3*8 =24 5*3 =… 8*3 =…
3*6 =18 3*9 =27 6*3 =… 9*3 =…
Составление двух первых таблиц распределяется на два урока, что соответственно увеличивает время, отведенное на их заучивание. Каждая из двух последних таблиц составляется на одном уроке, поскольку предполагается, что дети, зная исходную таблицу, не должны отдельно заучивать результаты таблиц, полученных с помощью перестановки множителей.
На самом деле, многие дети учат каждую таблицу отдельно, поскольку недостаточный уровень развития гибкости мышления не позволяет им легко перестроить модель заученной схемы табличного случая в обратном порядке.
Для запоминания таблицы умножения существуют такие приемы как:
- прием счета двойками, тройками, пятерками;
- прием последовательного сложения – основной прием получения результатов табличного умножения. Данный прием связан со смыслом действия умножения как сложения одинаковых слагаемых;
- прием прибавления слагаемого к предыдущему результату (вычитания из предыдущего результата).
- прием взаимосвязанной пары: 2*6 6*2 (перестановка множителей);
- прием запоминания последовательности случаев с ориентиром на возрастание второго множителя;
- прием «порции»;
- прием запоминающегося случая в качестве опорного. Например, 5*6 =30, значит 5*7 =30+5 =35;
- прием внешней опоры; В качестве опоры используется рисунок или прямоугольная таблица чисел. Детям, которые обладают плохой механической памятью, можно па первых порах предложить использовать клетчатое поле тетради. Обводя на клетчатом поле прямоугольник с заданным количеством клеток в сторонах, ребенок использует эту модель для контроля полученного результата или просто подсчитывает клетки как умеет. Например:
Сайт о образовании, педагогике, самообучении. На сайте раскрываются современные концепции педагогики и педагогические практики, дана информация о состоянии образовании в России и мире.